Муниципальное бюджетное общеобразовательное учреждение «Менделеевская средняя общеобразовательная школа»

выписка из основной образовательной программы среднего общего образования,

УТВЕРЖДЕННОЙ ПРИКАЗОМ № 269-ок ОТ 31.08.2022,

ПРОТОКОЛ ПЕДСОВЕТА №11 ОТ 23.08.2022Г.

(ФГОС СОО, утвержденный приказом Минобрнауки РФ от 17.05.2012 г. № 413 с изменениями)

РАБОЧАЯ ПРОГРАММА УЧЕБНОГО ПРЕДМЕТА

«Биология»

10-11 класс, углубленный уровень 103 часа в год

MBOY «MCOUI»

MBOY «MCOUI»

MBOY «MCOUI»

Выписка верна

31.08.2022 г.

Директор Т.Б. Богданова

Пояснительная записка

Рабочая программа разработана в соответствии: с Федеральным законом №273 «Об образовании в Российской Федерации» от 29 декабря 2012 года (в редакции от 8.12.2020 г.); требованиями ФГОС среднего общего образования, утвержденными приказом Минобрнауки от. 17.05.2012 №1897; программы среднего общего образования по биологии для 10-11 класса (линия Н.И.Сонина).

Изучение курса «Биология» в 10 и 11 классе на углубленном уровне основывается на знаниях, полученных учащимися в курсе биологии за 6-9 класс. В программе распределение материала структурировано по уровням организации живой природы. Программа рассчитана на 3 часа классных занятий в неделю, всего 204 часа на 2 года обучения.

Цель: формировании: научной картины мира, навыков здорового и безопасного для человека и окружающей среды образа жизни, экологического сознания, ценностного отношения к живой природе и человеку, собственной позиции по отношению к биологической информации, подготовку к последующему профессиональному образованию.

Задачи, решаемые в процессе обучения биологии в 10-11 классах на углубленном уровне:

- освоение знаний об основных биологических теориях, идеях, принципах, являющихся частью современной картины мира.
- овладение умениями характеризовать современные научные открытия в области биологии, устанавливать связи между развитием биологии и экологическими проблемами человечества .
- развитие познавательных интересов, интеллектуальных и творческих способностей в области биологии.
- воспитание необходимости бережного отношения к природе, соблюдение этических норм при проведении биологических исследований.
- использование приобретенных знаний и умений в повседневной жизни.

Рабочая программа предмета реализуется в том числе с использование м лабораторного оборудования Центра естественно - научного и технологического профиля «Точка роста»

Планируемые результаты:

Личностные образовательные результаты:

- Реализация этических установок по отношению к биологическим открытиям, исследованиям и их результатам;
- Признание высокой ценности жизни во всех её проявлениях, позитивного ценностного отношения к собственному здоровью и здоровью других людей; культуры поведения в природе;
- Сформированность познавательных мотивов, направленных на получение нового знания в области биологии в связи с будущей профессиональной деятельностью или бытовыми проблемами, связанными с сохранениям собственного здоровья и экологической безопасности;

Метапредметные образовательные результаты:

• умения применять биологические знания для объяснения процессов, использовать информацию о современных достижениях в области биологии; работать с

- биологическими приборами, инструментами, справочниками; проводить наблюдения за биологическими объектами;
- Способность выбирать целевые и смысловые установки в своих действиях и поступках по отношению к живой природе, здоровью своему и окружающих;

Предметные результаты

Выпускник на углубленном уровне научится:

- оценивать роль биологических открытий и современных исследований в развитии науки и в практической деятельности людей, оценивать роль биологии в формировании современной научной картины мира, прогнозировать перспективы развития биологии;
- устанавливать и характеризовать связь основополагающих биологических понятий (клетка, организм, вид, экосистема, биосфера) с основополагающими понятиями других естественных наук, обосновывать систему взглядов на живую природу и место в ней человека, применяя биологические теории, учения, законы, закономерности,
- проводить учебно-исследовательскую деятельность по биологии: выдвигать гипотезы, планировать работу, отбирать и преобразовывать необходимую информацию, проводить эксперименты, интерпретировать результаты, делать выводы на основе полученных результатов.
- выявлять и обосновывать существенные особенности разных уровней организации жизни; устанавливать связь строения и функций основных биологических макромолекул, их роль в процессах клеточного метаболизма;
- решать задачи на определение последовательности нуклеотидов ДНК и иРНК (мРНК), антикодонов тРНК, последовательности аминокислот в молекуле белка, применяя знания о реакциях матричного синтеза, генетическом коде, принципе комплементарности;, делать выводы об изменениях, которые произойдут в процессах матричного синтеза, в случае изменения последовательности нуклеотидов ДНК; сравнивать фазы деления клетки; решать задачи на определение и сравнение количества генетического материала (хромосом и ДНК)в клетках многоклеточных организмов в разных фазах клеточного цикла;
- выявлять существенные признаки строения клеток организмов разных царств живой природы, устанавливать взаимосвязь строения и функций частей и органоидов клетки;
- обосновывать взаимосвязь пластического и энергетического обменов; сравнивать процессы пластического и энергетического обменов, происходящих в клетках живых организмов;
- определять количество хромосом в клетках растений основных отделов на разных этапах жизненного цикла;
- решать генетические задачи на дигибридное скрещивание, сцепленное (в том числе с полом) наследование, анализирующее скрещивание, применяя законы наследственности и закономерности сцепленного наследования; раскрывать причины наследственных заболеваний, аргументировать необходимость мер предупреждения таких заболеваний;
- сравнивать разные способы размножения организмов; характеризовать основные этапы онтогенеза организмов; выявлять причины и существенные признаки модификационной

- и мутационной изменчивости; обосновывать роль изменчивости в естественном и искусственном отборе;
- обосновывать значение разных методов селекции в создании сортов растений, пород животных и штаммов микроорганизмов; обосновывать причины изменяемости и многообразия видов, применяя синтетическую теорию эволюции;
- характеризовать популяцию как единицу эволюции, вид как систематическую категорию и как результат эволюции; устанавливать связь структуры и свойств экосистемы; составлять схемы переноса веществ и энергии в экосистеме (сети питания), прогнозировать их изменения в зависимости от изменения факторов среды;
- аргументировать собственную позицию по отношению к экологическим проблемам и поведению в природной среде; обосновывать необходимость устойчивого развития как условия сохранения биосферы; оценивать практическое и этическое значение современных исследований в биологии, медицине, экологии, биотехнологии;
- обосновывать собственную оценку; выявлять в тексте биологического содержания проблему и аргументированно ее объяснять, представлять биологическую информацию в виде текста, таблицы, схемы, графика, диаграммы и делать выводы на основании представленных данных; преобразовывать график, таблицу, диаграмму, схему в текст биологического содержания.

Выпускник на углубленном уровне получит возможность научиться:

- организовывать и проводить индивидуальную исследовательскую деятельность по биологии (или разрабатывать индивидуальный проект)
- выдвигать гипотезы, планировать работу, отбирать и преобразовывать необходимую информацию, проводить эксперименты, интерпретировать результаты, делать выводы на основе полученных результатов, представлять продукт своих исследований; прогнозировать последствия собственных исследований с учетом этических норм и экологических требований;
- выделять существенные особенности жизненных циклов представителей разных отделов растений и типов животных, изображать циклы развития в виде схем;
- анализировать и использовать в решении учебных и исследовательских задач информацию о современных исследованиях в биологии, медицине и экологии; аргументировать необходимость синтеза естественнонаучного и социогуманитарного знания в эпоху информационной цивилизации
- моделировать изменение экосистем под влиянием различных групп факторов окружающей среды;
- выявлять в процессе исследовательской деятельности последствия антропогенного воздействия на экосистемы своего региона, предлагать способы снижения антропогенного воздействия на экосистемы;
- использовать приобретенные компетенции в практической деятельности и повседневной жизни, для приобретения опыта деятельности, предшествующей профессиональной, в основе которой лежит биология как учебный предмет.

Содержание тем учебного предмета (207 часов, 3 часа в неделю) РАЗДЕЛ 1 Введение в биологию (3 часа)

Тема 1.1. Предмет и задачи общей биологии. Уровни организации живой материи (2 часа) Биология как наука; предмет и методы изучения в биологии. Общая биология — учебная дисциплина об основных закономерностях возникновения, развития и поддержания жизни на Земле. Общая биология как ИЗ источников формирования один диалектикоматериалистического мировоззрения. Обшебиологические закономерности основа рационального природопользования, сохранения окружающей среды, интенсификации сельскохозяйственного производства и сохранения здоровья человека. Связь биологических дисциплин с другими науками (химией, физикой, географией, астрономией, историей и др.). Роль биологии в формировании научных представлений о мире. Жизнь как форма существования материи; определение понятия «жизнь». Жизнь и живое вещество; косное, биокосное и биогенное вещество биосферы. Уровни организации живой материи и принципы молекулярный, субклеточный, клеточный, тканевый организменный, популяционно-видовой, биоценотический и биосферный уровни организации живого

■ Демонстрация. Схемы, отражающие многоуровневую организацию живого (организменный и биоценотический уровни).

Тема 1.2. Основные свойства живого. Многообразие живого мира (3 часа)

Единство химического состава живой материи; основные группы химических элементов и молекул, образующие живое вещество биосферы. Клеточное строение организмов, населяющих Землю. Обмен веществ (метаболизм) и саморегуляция в биологических системах; понятие о гомеостазе как об обязательном условии существования живых систем. Самовоспроизведение; наследственность и изменчивость как основа существования живой материи, их проявления на различных уровнях организации живого. Рост и развитие. Раздражимость; формы избирательной реакции организмов на внешние воздействия (безусловные и условные рефлексы; таксисы, тропизмы и настии). Ритмичность процессов жизнедеятельности; биологические ритмы и их адаптивное значение. Дискретность живого вещества и взаимоотношение части и целого в биосистемах. Энергозависимость живых организмов; формы потребления энергии. Царства живой природы; естественная классификация живых организмов. Видовое разнообразие крупных систематических групп и основные принципы организации животных, растений, грибов и микроорганизмов.

- Демонстрация. Схемы, отражающие структуру царств живой природы, многообразие живых организмов. Схемы и таблицы, характеризующие строение и распространение в биосфере растений, животных, грибов и микроорганизмов.
- Основные понятия. Биология. Жизнь. Основные отличия живых организмов от объектов неживой природы. Уровни организации живой материи. Объекты и методы изучения в биологии. Многообразие живого мира; царства живой природы, естественная система классификации живых организмов. Неорганические и органические молекулы и вещества; клетка, ткань, орган, системы органов. Понятие о целостном организме. Вид и популяция (общие представления). Биогеоценоз. Биосфера.

РАЗДЕЛ 2 Происхождение и начальные этапы развития жизни на Земле (14 часов)

Тема 2.1. История представлений о возникновении жизни на Земле (4 часа)

Мифологические представления. Первые научные попытки объяснения сущности и процесса возникновения жизни. Опыты Ф. Реди, взгляды В. Гарвея, эксперименты Л. Пастера. Теории вечности жизни. Материалистические представления о возникновении жизни на Земле.

■ Демонстрация. Схема экспериментов Л. Пастера.

Тема 2.2. Предпосылки возникновения жизни на Земле (5 часов)

Предпосылки возникновения жизни на Земле: космические и планетарные предпосылки; химические предпосылки эволюции материи в направлении возникновения органических молекул: первичная атмосфера и эволюция химических элементов, неорганических и органических молекул на ранних этапах развития Земли.

Тема 2.3 Современные представления о возникновении жизни на Земле (5 часов)

Современные представления о возникновении жизни; теория А. И. Опарина, опыты С. Миллера. Теории происхождения протобиополимеров. Свойства коацерватов: реакции обмена веществ, самовоспроизведение. Эволюция протобионтов: формирование внутренней среды, появление катализаторов органической природы, возникновение генетического кода. Значение работ С. Фокса и Дж. Бернала. Гипотезы возникновения генетического кода. Начальные этапы биологической эволюции: возникновение фотосинтеза, эукариот, полового процесса и многоклеточности.

■ Демонстрация. Схемы возникновения одноклеточных эукариот, многоклеточных организмов, развития царств растений и животных, представленных в учебнике.

РАЗДЕЛ З Учение о клетке (33 часа)

Тема 3.1. Введение в цитологию

Тема 3.2 Химическая организация живого вещества (11 часов) Предмет и задачи цитологии. Методы изучения клетки: световая и электронная микроскопия; биохимические типа клеточной организации: прокариотические иммунологические методы. Два эукариотические клетки. Элементный состав живого вещества биосферы. Распространенность элементов, их вклад в образование живой материи и объектов неживой природы. Макроэлементы, микроэлементы; их вклад в образование неорганических и органических молекул живого вещества. Неорганические молекулы живого вещества: вода; химические свойства и биологическая роль: растворитель гидрофильных молекул, среда протекания биохимических превращений; роль воды в компартментализации и межмолекулярных взаимодействиях, теплорегуляции и др. Соли неорганических кислот, их вклад в обеспечение процессов жизнедеятельности и поддержание гомеостаза. Роль катионов и анионов в обеспечении процессов жизнедеятельности. Осмос и осмотическое давление; осмотическое поступление молекул в клетку. Буферные системы клетки и организма. Органические молекулы. Биологические полимеры — белки; структурная организация (первичная, варианты вторичной, третичная и четвертичная структурная организация молекул белка и химические Свойства белков: образующие). водорастворимость, термолабильность, заряд и др.; денатурация (обратимая и необратимая), ренатурация; поверхностный биологический смысл и практическое значение. Функции белковых молекул. Биологические катализаторы — белки, классификация, их свойства, роль белков в обеспечении процессов жизнедеятельности. Углеводы в жизни растений, животных, грибов и микроорганизмов. Структурно-функциональные особенности организации моно-и дисахаридов. Строение и биологическая роль биополимеров — полисахаридов. Жиры — основной структурный компонент клеточных мембран и источник энергии. Особенности строения жиров и липоидов, лежащие в основе их функциональной активности на уровне клетки и целостного организма. ДНК — молекулы наследственности; история изучения. Уровни структурной организации; структура полинуклеотидных цепей, правило комплементарности {правилоЧаргаффа1), двойная спираль (Уотсон и Крик); биологическая роль ДНК. Генетический код, свойства кода. Редупликация ДНК, передача наследственной информации из поколения в поколение. Передача наследственной информации из ядра в цитоплазму; транскрипция. РНК, структура и функции. Информационные, транспортные, рибосомальные и регуляторные РНК. «Малые» молекулы и

их роль в обменных процессах. Витамины: строение, источники поступления, функции в организме. Определение нуклеотидных последовательностей (секвенирование) геномов растений и животных. Геном человека. Генетическая инженерия; генодиагностика и генотерапия заболеваний человека и животных.

- Демонстрация. Объемные модели структурной организации биологических полимеров: белков и нуклеиновых кислот; их сравнение с моделями искусственных полимеров (поливинилхлорид и др.).
- Лабораторные и практические работы Ферментативное расщепление пероксида водорода в тканях организма. Определение крахмала в растительных тканях. Строение и функции клеток. Тема 3.3. Строение и функции прокариотической клетки (1 час)

Царство Прокариоты (Дробянки); систематика и отдельные представители: цианобактерии, бактерии и микоплазмы. Форма и размеры прокариотических клеток. Строение цитоплазмы бактериальной клетки; локализация ферментных систем и организация метаболизма у прокариот. Генетический аппарат бактерий; особенности реализации наследственной информации. Особенности жизнедеятельности бактерий: автотрофные и гетеротрофные бактерии; аэробные и анаэробные микроорганизмы. Спорообразование и его биологическое значение. Размножение, половой процесс у бактерий; рекомбинации. Место и роль прокариот в биоценозах.

■ Демонстрация. Схемы строения клеток различных прокариот.

Тема 3.4. Структурно-функциональная организация клеток эукариот (7 часов)

Цитоплазма эукариотической клетки. Мембранный принцип организации клеток; строение биологической мембраны, морфологические и функциональные особенности мембран различных клеточных структур. Органеллы цитоплазмы, их структура и функции. Наружная цитоплазматиче-ская мембрана, эндоплазматическая сеть, аппарат Гольджи, лизосомы; механизм внутриклеточного пищеварения. Митохондрии — энергетические станции-клетки; механизмы клеточного дыхания. Рибосомы и их участие в процессах трансляции. Клеточный центр. Органоиды движения: жгутики и реснички. Цитоскелет. Специальные органоиды цитоплазмы: сократительные вакуоли и др. Взаимодействие органоидов в обеспечении процессов метаболизма. Особенности строения растительных клеток; вакуоли и пластиды. Виды пластид; их структура и функциональные особенности. Клеточная стенка. Особенности строения клеток грибов. Включения, значение и роль в метаболизме клеток. Клеточное ядро центр управления жизнедеятельностью клетки. Структуры клеточного ядра: ядерная оболочка, хроматин (гетерохроматин и эухроматин), ядрышко. Кариоплазма; химический состав и значение для жизнедеятельности ядра. Дифференциальная активность генов; эухроматин. Хромосомы. Структура хромосом в различные периоды жизненного цикла клетки; кариотип, понятие о гомологичных хромосомах. Диплоидный и гаплоидный наборы хромосом. Клеточные технологии. Стволовые клетки и перспективы их применения в биологии и медицине. Клонирование растений и животных.

- Демонстрация. Модели клетки. Схемы строения органоидов растительной и животной клеток. Микропрепараты клеток растений, животных и одноклеточных грибов.
- Лабораторные и практические работы Изучение строения растительной и животной клеток под микроскопом. Наблюдение за движением цитоплазмы в растительных клетках.

Тема 3.5. Обмен веществ в клетке (метаболизм) (8 часов)

Обмен веществ и превращение энергии в клетке — основа всех проявлений ее жизнедеятельности. Каталитический характер реакций обмена веществ. Компартментализация процессов метаболизма и локализация специфических ферментов в мембранах определенных

клеточных структур. Автотрофные и гетеротрофные организмы. Пластический и энергетический обмен. Реализация наследственной информации. Биологический синтез белков и других органических молекул в клетке. Транскрипция; ее сущность и механизм. Процессинг иРНК; биологический смысл и значение. Трансляция; сущность и механизм. Энергетический обмен; структура и функции АТФ. Этапы энергетического обмена. Подготовительный этап, роль лизосом; неполное (бескислородное) расщепление. Полное кислородное окисление; локализация процессов в митохондриях. Сопряжение расщепления глюкозы в клетке с распадом и синтезом АТФ. Фотосинтез; световая фаза и особенности организации тилакоидов гран, энергетическая ценность. Темновая фаза фотосинтеза; процессы темновой фазы; использование энергии. Хемосинтез. Принципы нервной и эндокринной регуляции процессов превращения веществ и энергии в клетке.

■ Демонстрация. Схемы путей метаболизма в клетке. Энергетический обмен на примере расщепления глюкозы. Пластический обмен: биосинтез белка и фотосинтез (моделиаппликации). Схемы, отражающие принципы регуляции метаболизма на уровне целостного организма.

Тема 3.6. Жизненный цикл клеток (3 часа)

Клетки в многоклеточном организме. Понятие о дифференцировке клеток многоклеточного организма. Жизненный цикл клеток. Ткани организма с разной скоростью клеточного обновления: обновляющиеся, растущие и стабильные. Размножение клеток. Митотический цикл: интерфаза — период подготовки клетки к делению, редупликация ДНК; митоз, фазы митотического деления и преобразования хромосом в них. Механизм образования веретена деления и расхождения дочерних хромосом в анафазе. Биологический смысл митоза. Биологическое значение митоза (бесполое размножение, рост, восполнение клеточных потерь в физиологических и патологических условиях). Понятие о регенерации. Нарушения интенсивности клеточного размножения и заболевания человека и животных', трофические язвы, доброкачественные и злокачественные опухоли и др.

■ Демонстрация. Митотическое деление клетки в корешке лука под микроскопом и на схеме. Гистологические препараты различных тканей млекопитающих. Схемы строения растительных и животных клеток различных тканей в процессе деления. Схемы путей регенерации органов и тканей у животных разных систематических групп.

Тема 3.7. Неклеточные формы жизни.

Вирусы и бактериофаги (2часа) Вирусы — внутриклеточные паразиты на генетическом уровне. Открытие вирусов, механизм взаимодействия вируса и клетки, инфекционный процесс. Вертикальный и горизонтальный тип передачи вирусов. Заболевания животных и растений, вызываемые вирусами. Вирусные заболевания, встречающиеся у человека; грипп, гепатит, СПИД. Бактериофаги

. ■ Демонстрация. Модели различных вирусных частиц. Схемы взаимодействия вируса и клетки при горизонтальном и вертикальном типе передачи инфекции. Схемы, отражающие процесс развития вирусных заболеваний.

Тема 3.8. Клеточная теория (1 час)

Клеточная теория строения организмов. История развития клеточной теории; работы М. Шлейдена, Т. Шванна, Р. Броуна, Р. Вирхова и других ученых. Основные положения клеточной теории; современное состояние клеточной теории строения организмов. Значение клеточной теории для развития биологии.

■ Демонстрация. Биографии ученых, внесших вклад в развитие клеточной теории.

РАЗДЕЛ 4 Размножение организмов (7 часов)

- Тема 4.1. Бесполое размножение растений и животных (2 часа) Формы бесполого размножения: митотическое деление клеток одноклеточных; спорообразование, почкование у одноклеточных и многоклеточных организмов; вегетативное размножение. Биологический смысл и эволюционное значение бесполого размножения. Демонстрация. Способы вегетативного размножения плодовых деревьев и овощных культур. Схемы и рисунки, показывающие почкование дрожжевых грибов и кишечнополостных.
- Тема 4.2. Половое размножение (5часов) Половое размножение растений и животных. Половая система, органы полового размножения млекопитающих. Гаметогенез. Периоды образования половых клеток: размножение и рост. Период созревания (мейоз); профаза I и процессы, в ней происходящие: конъюгация, кроссинговер. Механизм, генетические последствия и биологический смысл кроссинговера. Биологическое значение и биологический смысл мейоза. Период формирования половых клеток; сущность и особенности течения. Особенности сперматогенеза и овогенеза. Осеменение и оплодотворение. Моно- и полиспермия; биологическое значение. Наружное и внутреннее оплодотворение. Партеногенез. Развитие половых клеток у высших растений; двойное оплодотворение. Эволюционное значение полового размножения.
- Демонстрация. Микропрепараты яйцеклеток. Схема строения сперматозоидов различных животных. Схемы и рисунки, представляющие разнообразие потомства у одной пары родителей. Основные понятия. Многообразие форм и распространенность бесполого размножения. Биологическое значение бесполого размножения. Половое размножение и его биологическое значение. Органы половой системы; принципы их строения и гигиена. Гаметогенез; мейоз и его биологическое значение. Осеменение и оплодотворение.

РАЗДЕЛ 5 Индивидуальное развитие организмов (15 часов)

- Тема 5.1. Эмбриональное развитие животных (5 часов) Типы яйцеклеток; полярность, И генетических детерминант. Оболочки распределение желтка оплодотворенных яйцеклеток к развитию. Основные закономерности дробления; образование однослойного зародыша — бластулы. Гаструляция; закономерности образования двуслойного зародыша — гаструлы. Зародышевые листки и их дальнейшая дифференцировка. Первичный органогенез (нейруляция) и дальнейшая дифференцировка тканей, органов и систем. Регуляция эмбрионального развития; детерминация и эмбриональная индукция. Роль нервной и эндокринной систем в обес- печении эмбрионального развития организмов. Управление размножением растений и животных. Искусственное осеменение, осеменение in vitro, пересадка зародышей. Клонирование растений и животных; перспективы создания тканей и органов человека.
- Демонстрация. Сравнительный анализ зародышей позвоночных на разных этапах эмбрионального развития. Модели эмбрионов ланцетника, лягушек или других животных. Таблицы, иллюстрирующие бесполое и половое размножение.
- Тема 5.2. Постэмбриональное развитие животных (2 часа)
- Закономерности постэмбрионального периода развития. Непрямое развитие; полный и неполный метаморфоз. Биологический смысл развития c метаморфозом. постэмбрионального развития (личинка, куколка, имаго). Прямое репродуктивный, репродуктивный и пострепродуктивный периоды. Старение и смерть; биология продолжительности жизни.
- Демонстрация. Таблицы, иллюстрирующие процесс метаморфоза у членистоногих и позвоночных (жесткокрылые и чешуйчатокрылые, амфибии).
- Тема 5.3. Онтогенез высших растений (4часа)

Биологическое значение двойного оплодотворения. Эмбриональное развитие; деление зиготы, образование тканей и органов зародыша. Постэмбриональное развитие. Прорастание семян, дифференцировка органов и тканей, формирование побеговой и корневой систем. Регуляция развития растений; фитогормоны.

■ Демонстрация. Схемы эмбрионального и постэмбрионального развития высших растений. Тема 5.4. Общие закономерности онтогенеза (1 час)

Сходство зародышей и эмбриональная дивергенция признаков (закон К. Бэра). Биогенетический закон (Э. Геккель и К. Мюллер). Работы академика А. Н. Северцова, посвященные эмбриональной изменчивости (изменчивость всех стадий онтогенеза; консервативность ранних стадий эмбрионального развития; возникновение изменений как преобразование стадий развития и полное выпадение предковых признаков).

- Демонстрация. Таблица, отражающая сходство зародышей позвоночных животных. Схемы преобразования органов и тканей в филогенезе. Тема 5.5. Развитие организма и окружающая среда (3 часа) Роль факторов окружающей среды в эмбриональном и постэмбриональном развитии организма. Критические периоды развития. Влияние изменений гомеостаза организма матери и плода в результате воздействия токсичных веществ (табачного дыма, алкоголя, наркотиков и т. д.) на ход эмбрионального и постэмбрионального периодов развития (врожденные уродства). Понятие о регенерации; внутриклеточная, клеточная, тканевая и органная регенерация. Эволюция способности к регенерации у позвоночных животных.
- Демонстрация. Фотографии, отражающие последствия воздействий факторов среды на развитие организмов. Схемы и статистические таблицы, демонстрирующие последствия употребления алкоголя, наркотиков и табака на характер развития признаков и свойств у потомства. Основные понятия. Этапы эмбрионального развития растений и животных. Периоды постэмбрионального развития. Биологическая продолжительность жизни. Влияние вредных воздействий курения, употребления наркотиков, алкоголя, загрязнения окружающей среды на развитие организма и продолжительность жизни

РАЗДЕЛ 6 Основы генетики и селекции (30 часов)

Тема 6.1. История представлений о наследственности и изменчивости (1 час)

Представления древних о родстве и характере передачи признаков из поколения в поколение. Взгляды средневековых ученых на процессы наследования признаков. История развития генетики. Основные понятия генетики. Признаки и свойства; гены, аллельные гены. Гомозиготные и гетерозиготные организмы. Генотип и фенотип организма; генофонд.

■ Демонстрация. Биографии виднейших генетиков.

Тема 6.2. Основные закономерности наследственности (15часов)

Молекулярная структура гена. Гены структурные и регуляторные. Подвижные генетические элементы. Регуляция экспрессии генов на уровне транскрипции, процессинга и-РНК и трансляции. Хромосомная (ядерная) и нехромосомная (цитоплазматическая) наследственность. Связь между генами и признаками. Закономерности наследования признаков, выявленные Г. Менделем. Гибридологический метод изучения наследственности. Моногибридное скрещивание. Первый закон Менделя — закон доминирования. Второй закон Менделя — закон расщепления. Полное и неполное доминирование. Закон чистоты гамет и его цитологическое обоснование. Множественные аллели. Анализирующее скрещивание. Дигибридное и полигибридное скрещивание; третий закон Менделя — закон независимого комбинирования. Хромосомная теория наследственности. Группы сцепления генов. Сцепленное наследование признаков. Закон Т. Моргана. Полное и неполное сцепление генов; расстояние между генами, расположенными в одной хромосоме; генетические карты хромосом. Генетическое определение пола; гомогаметный и гетерогаметный пол. Генетическая структура половых хромосом. Наследование признаков, сцепленных с полом. Генотип как целостная система. Взаимодействие аллельных (доминирование, неполное доминирование, кодоминирование и сверхдоминирование) и неаллельных (комплементарность, эпистаз и полимерия) генов в определении признаков. Плейотропия. Экспрессивность и пенетрантность гена

- .

 Демонстрация. Карты хромосом человека. Родословные выдающихся представителей культуры.
- Лабораторные и практические работы Решение генетических задач и составление родословных.

Тема 6.3. Основные закономерности изменчивости (6 часов

изменчивости. Генотипическая формы изменчивость. Мутации. хромосомные и геномные мутации. Свойства мутаций; соматические и генеративные мутации. Нейтральные мутации. Полулетальные и летальные мутации. Причины и частота мутаций; мутагенные факторы. Эволюционная роль мутаций; значение мутаций для практики сельского хозяйства и биотехнологии. Комбинативная изменчивость. Уровни возникновения различных комбинаций генов и их роль в создании генетического разнообразия в пределах вида (кроссинговер, независимое расхождение гомологичных хромосом в первом и дочерних хромосом втором делении мейоза, оплодотворение). Эволюционное комбинативной изменчивости. Закон гомологических рядов в наследственной изменчивости Н. И. Вавилова. Фенотипическая, или модификационная, изменчивость. Роль условий внешней среды в развитии и проявлении признаков и свойств. Свойства модификаций: определенность условиями среды, направленность, групповой характер, ненаследуемость. Статистические закономерности модификационной изменчивости; вариационный ряд и вариационная кривая. Норма реакции; зависимость от генотипа. Управление доминированием.

- Демонстрация. Примеры модификационной изменчивости.
- Лабораторные и практические работы Изучение изменчивости. Построение вариационной кривой (размеры листьев растений, антропометрические данные учащихся).

Тема 6.4. Генетика человека (Зчаса)

Методы изучения наследственности человека: генеалогический, близнецовый, цитогенетический и др. Генетические карты хромосом человека. Сравнительный анализ хромосом человека и человекообразных обезьян. Характер наследования признаков у человека. Генные и хромосомные аномалии человека и вызываемые ими заболевания. Генетическое консультирование. Генетическое родство человеческих рас, их биологическая равноценность.

- Демонстрация. Хромосомные аномалии человека и их фенотипические проявления.
- Лабораторная работа Составление родословных.

Тема 6.5. Селекция животных, растений и микроорганизмов (5часов)

Центры происхождения и многообразия культурных растений. Сорт, порода, штамм. Методы селекции растений и животных: отбор и гибридизация; формы отбора (индивидуальный и массовый). Отдаленная гибридизация; явление гетерозиса. Искусственный мутагенез. Селекция микроорганизмов. Биотехнология и генетическая инженерия. Трансгенные растения; генная и клеточная инженерия в животноводстве. Достижения и основные направления современной селекции. Значение селекции для развития сельскохозяйственного производства, медицинской, микробиологической и других отраслей промышленности.

■ Демонстрация. Сравнительный анализ пород домашних животных, сортов культурных растений и их диких предков. Коллекции и препараты сортов культурных растений, отличающихся наибольшей плодовитостью.

Итоговое тестирование (1 час)

11 класс

РАЗДЕЛ 7 Эволюционное учение (38 часов)

- Тема 7.1. Развитие представлений об эволюции живой природы до Ч. Дарвина (6 часа) Развитие биологии в додарвиновский Период. Господство в науке представлений об «изначальной целесообразности» и неизменности живой природы. Работы К. Линнея по систематике растений и животных; принципы линнеевской систематики. Труды Ж. Кювье и Ж. де Сент-Илера. Эволюционная теория Ж. Б. Ламарка. Первые русские эволюционисты.
- Демонстрация. Биографии ученых, внесших вклад в развитие эволюционных идей. Жизнь и деятельность Жана Батиста Франсуа де Ламарка. Тема 7.2. Дарвинизм (6 часов) Предпосылки возникновения учения Ч. Дарвина: достижения в области естественных наук, экспедиционный материал Ч. Дарвина. Учение Ч. Дарвина об искусственном отборе. Учение Ч. Дарвина о естественном отборе. Вид элементарная эволюционная единица. Всеобщая индивидуальная изменчивость и избыточная численность потомства. Борьба за существование и естественный отбор.
- Демонстрация. Биография Ч. Дарвина. Маршрут и конкретные находки Ч. Дарвина во время путешествия на корабле «Бигль».
- Лабораторные и практические работы. Изучение изменчивости. Вид и его критерии. Результаты искусственного отбора на сортах культурных растений.

Тема 7.3.Синтетическая теория эволюции. Микроэволюция (14 часов)

Генетика и эволюционная теория. Эволюционная роль мутаций. Популяция — элементарная эволюционная единица. Генофонд популяций. Идеальные и реальные популяции (закон Харди — Вайнберга). Генетические процессы в популяциях. Резерв наследственной изменчивости популяций. Формы естественного отбора. Приспособленность организмов к среде обитания как результат действия естественного отбора. Микроэволюция. Современные представления о видообразовании (С. С. Четвериков, И. И. Шмальгаузен). Пути и скорость видообразования; географическое и экологическое видообразование. Эволюционная роль модификаций; физиологические адаптации. Темпы эволюции.

- Демонстрация. Схемы, иллюстрирующие процесс географического видообразования. Показ живых растений и животных; гербариев и коллекций, демонстрирующих индивидуальную изменчивость и разнообразие сортов культурных растений и пород домашних животных, а также результаты приспособленности организмов к среде обитания и результаты видообразования.
- Лабораторная работа Изучение приспособленности организмов к среде обитания.

Тема 7.4. Основные закономерности эволюции. Макроэволюция (12 часов)

Главные направления эволюционного процесса. Биологический прогресс и биологический регресс (А. Н. Северцов). Пути достижения биологического прогресса. Арогенез; сущность ароморфных изменений и их роль в эволюции. Возникновение крупных систематических групп живых организмов — макроэволюция. Аллогенез и прогрессивное приспособление к определенным условиям существования. Катагенез как форма достижения биологического процветания групп организмов. Основные закономерности эволюции: дивергенция, конвергенция, параллелизм; правила эволюции групп организмов. Результаты эволюции: многообразие видов, органическая целесообразность, постепенное усложнение организации.

■ Демонстрация. Примеры гомологичных и аналогичных органов, их строение и происхождение в процессе онтогенеза. Соотношение путей прогрессивной биологической

эволюции. Характеристика представителей животных и растений, внесенных в Красную книгу и находящихся под охраной государства.

РАЗДЕЛ 8 Развитие органического мира (18 часов)

Тема 8.1. Основные черты эволюции животного и растительного мира (8 часов) Развитие жизни на Земле в архейскую и протерозойскую эры. Первые следы жизни на Земле. Появление всех современных типов беспозвоночных животных. Общая характеристика и систематика вымерших и современных беспозвоночных; основные направления эволюции беспозвоночных животных. Первые хордовые. Направления эволюции низших хордовых; общая характеристика бесчерепных и оболочников. Развитие водных растений. Развитие жизни на Земле в палеозойскую эру. Эволюция растений; появление первых сосудистых растений; папоротники, семенные папоротники, голосеменные растения. Возникновение позвоночных: земноводных, пресмыкающихся. Главные направления эволюции позвоночных; характеристика анамний и амниот. Развитие жизни на Земле в мезозойскую эру. Появление и распространение покрытосеменных растений. Эволюция наземных позвоночных. Возникновение птиц и млекопитающих. Сравнительная характеристика вымерших и современных наземных позвоночных. Вымирание древних голосеменных растений и пресмыкающихся. Развитие жизни на Земле в кайнозойскую эру. Бурное развитие цветковых растений, многообразие насекомых (параллельная эволюция). Развитие плацентарных млекопитающих, появление хищных. Возникновение приматов. Появление первых представителей семейства Люди. Четвертичный период: эволюция млекопитающих. Развитие приматов: направления эволюции человека. Общие предки человека и человекообразных обезьян.

■ Демонстрация. Репродукции картин 3. Буриана, отражающих фауну и флору различных периодов. Схемы развития царств живой природы. Окаменелости, отпечатки растений в древних породах.

Тема 8.2. Происхождение человека (10 часов)

Место человека в живой природе. Систематическое положение вида Homo sapiens в системе животного мира. Признаки и свойства человека, позволяющие отнести его к различным систематическим группам царства животных. Прямохождение; анатомические предпосылки к трудовой деятельности и дальнейшей социальной эволюции. Стадии эволюции человека: древнейший человек, древний человек, первые современные люди. Свойства человека как биологического вида. Популяционная структура вида Homo sapiens; человеческие расы; расообразование; единство происхождения рас. Свойства человека как биосоциального существа. Движущие силы антропогенеза. Ф. Энгельс о роли труда в процессе превращения обезьяны в человека. Развитие членораздельной речи, сознания и общественных отношений в становлении человека. Взаимоотношение социального и биологического в эволюции человека. Антинаучная сущность «социального дарвинизма» и расизма. Ведущая роль законов общественной жизни в социальном прогрессе человечества. Биологические свойства человеческого общества.

■ Демонстрация. Модели скелетов человека и позвоночных животных.

РАЗДЕЛ 9 Взаимоотношения организма и среды. Основы экологии (34 часов)

Тема 9.1. Понятие о биосфере (8 часов)

Биосфера — живая оболочка планеты. Структура биосферы: литосфера, гидросфера, атмосфера. Компоненты биосферы: живое вещество, видовой состав, разнообразие и вклад в биомассу; биокосное и косное вещество; биогенное вещество биосферы (В. И. Вернадский). Круговорот

веществ в природе. Демонстрация. Схемы, отражающие структуру биосферы и характеризующие ее отдельные составные части. Таблицы видового состава и разнообразия живых организмов биосферы. Схемы круговорота веществ в природе.

Тема 9.2. Жизнь в сообществах (5 часов) История формирования сообществ живых организмов. Геологическая история материков; изоляция, климатические условия. Биогеография. Основные биомы суши и Мирового океана. Биогеографические области.

■ Демонстрация. Карты, отражающие геологическую историю материков; распространенность основных биомов суши.

Тема 9.3. Взаимоотношения организма и среды (15 часов)

Естественные сообщества живых организмов. Биогеоценозы: экотоп и биоценоз. Компоненты биоценозов: продуценты, консументы, редуценты. Биоценозы: видовое разнообразие, плотность популяций, биомасса. Абиотические факторы среды. Роль температуры, освещенности, влажности и других факторов в жизнедеятельности сообществ. Интенсивность действия фактора; ограничивающий фактор. Взаимодействие факторов среды, пределы выносливости. Биотические факторы среды. Интеграция вида в биоценозе; экологические ниши. Цепи и сети питания. Экологическая пирамида чисел биомассы, энергии. Смена биоценозов. Причины смены биоценозов; формирование новых сообществ.

Тема 9.4. Взаимоотношения между организмами (6 часов)

Формы взаимоотношений между организмами. Позитивные отношения — симбиоз: мутуализм, кооперация, комменсализм, нахлебничество, квартирантство. Антибиотические отношения: хищничество, паразитизм, конкуренция, собственно антибиоз (антибиотики, фитонциды и др.). Происхождение и эволюция паразитизма. Нейтральные отношения — нейтрализм.

■ Демонстрация. Примеры симбиоза представителей различных царств живой природы.

РАЗДЕЛ 10 Биосфера и человек (11 часов)

Тема 10.1. Взаимосвязь природы и общества. Биология охраны природы (9 часов) Антропогенные факторы воздействия на биоценозы (роль человека в природе). Проблемы рационального природопользования, охраны природы: защита от загрязнений, сохранение эталонов и памятников природы, обеспечение природными ресурсами населения планеты. Меры по образованию экологических комплексов, экологическое образование.

■ Демонстрация. Влияние хозяйственной деятельности человека на природу. Карты заповедных территорий нашей страны и ближнего зарубежья.

Тема 10.2 Бионика (2 часа)

Основные понятия. Воздействие человека на биосферу. Охрана природы; биологический и социальный смысл сохранения видового разнообразия биоценозов. Рациональное природопользование; неисчерпаемые и исчерпаемые ресурсы. Заповедники, заказники, парки; Красная книга. Бионика. Генная инженерия, биотехнология.

Тематическое планирование

Наименование темы (раздела)	Количество часов	Реализация воспитате
10 класс		
1.Введение в биологию	3	Установление доверительных отношений
		способствующих позитивному восприятин
		активизация их познавательной деятельно
2. Происхождение и начальные этапы	14	Использование воспитательных возможно
развития жизни на Земле		перевод содержания с уровня знаний на ур
		восприятие ценностей.
3. Учение о клетке	33	Организация предметных образовательны
		развития познавательной и творческой акт
4. Размножение организмов	7	Использование воспитательных возможне
		перевод содержания с уровня знаний
		восприятие ценностей
5. Индивидуальное развитие организмов	15	Использование воспитательных возможно
		перевод содержания с уровня знаний на ур
		восприятие ценностей
6. Основы генетики и селекции	30	Инициирование и поддержка исследовател
Резервное время -	3	
11класс		
7. Эволюционное учение	38	Организация предметных образовательных
		развития познавательной и творческой акт
8. Развитие органического мира	18	Организация предметных образовательных
		развития познавательной и творческой акт
9. Взаимоотношения организма и среды.	34	Инициирование и поддержка исследовател
Основы экологии		
10. Биосфера и человек	11	Использование воспитательных возможно
		перевод содержания с уровня знаний на урвосприятие ценностей
Резервное время:	1	
	1	1

Формы диагностики и критерии оценивания деятельности учащихся:

- Устный и письменный опрос по теме (поурочный балл, в соответствии с критериями оценки устного ответа);
- Самостоятельные работы (бальное оценивание);
- Терминологические диктанты (бальное оценивание);
- Тесты (тематические и итоговые, по критериям оценивания тестов);
- Творческие работы
- Практические или лабораторные работы
- Индивидуальные и групповые проектные работы, учебно-исследовательские работы (по критериям оценивания проектных и исследовательских работ;
- Презентации (по требованиям к оформлению презентаций);

- Участие в школьных, муниципальных, краевых конкурсах
- Самооценка, взаимооценка, оценка деятельности группы.

Инструментарий для оценивания учащихся:

- 1. Результаты практических работ
- 2. Контрольные работы
- 3. Тестирование

Контрольные работы:

- 1. «Развитие представления об эволюции живой природы», «Дарвинизм»
- 2. «Синтетическая теория эволюции. Микроэволюция»
- 3. «Основные закономерности эволюции. Макроэволюция»
- 4. «Основные черты эволюции животного и растительного мира»
- 5. «Происхождение человека»
- 6. «Понятие о биосфере»
- 7. «Взаимоотношения организма и среды»
- 8. «Взаимоотношения между организмами»
- 9. «Взаимосвязь природы и общества. Биология охраны природы»

Лабораторные работы:

- 1. «Выявление идиоадаптаций у растений»
- 2. «Выявление адаптаций у животных»
- 3. «Описание экосистемы своей местности»

Практические работы:

- 1. «Сравнительная характеристика естественного и искусственного отбора»
- 2. «Сравнения процессов движущего и стабилизирующего отбора»
- 3. «Сравнения процессов географического и экологического видообразования»
- 4. «Выявление ароморфозов у растений»
- 5. «Выявление ароморфозов у животных»
- 6. «Анализ и оценка различных гипотез формирования человеческих рас»
- 7. «Составление схем круговорота углерода, кислорода, азота»
- 8. «Составление схем переноса веществ и энергии в экосистеме»
- 9. «Решение экологических задач».
- 10. «Сравнительная характеристика экосистем и агроэкосистем»

Учебно-методический комплект

- 1. Учебник: Захаров В.Б., Мамонтов С.Г. Сонин Н.И., Биология .Общая биология10 кл, углубленный уровень., 2015г., Захаров В.Б., Мамонтов С.Г. Сонин Н.И., Биология .Общая биология 11 кл, углубленный уровень., 2018г
- 2. Козлова Т.А. Методические рекомендации по использованию учебника В.Б. Захарова, С.Г. Мамонтова.
- 3. Программы для общеобразовательных учреждений Биология 6-11кл, М. «Дрофа »2010г
- 4. Биология 10-11 класс. Общие закономерности. Мультимедийное приложение к учебнику. Н.И. Сонина. «Дрофа» Физикон, 2006г